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Oil-paper composite insulation is an important part of insulation of the transformer equipments and its circuit mode plays an 
important role in researching influence of the frequency-dependent dielectric constant on transformer model. From the basic theory of 

dielectric, fractional theory is used to improve the present integer-order circuit model of oil-paper composite insulation and fractional 
circuit model of oil-paper composite insulation is proposed preliminarily.Then, the proposed fractional circuit model has been vertified 

by dielectric spectroscopy of oil-paper composite insulation. Finally, by comparing the fitting residuals of the integer-order model and 

fractional model and using proposed fractional circuit model to fit polarity reversal voltage response of oil-paper composite insulation, 

the conclusion can be drawn that fractional model in this paper has feasibility and veracity. 

 
Index Terms—Dielectric constant, oil-paper insulation, fractional calculus, numerical computation 

 

I. INTRODUCTION 

IL-PAPER COMPOSITE INSULATION is a kind of composite 

dielectrics that are used for the insulation of the 

transformer type electrical equipment.  Debye theory has been 

accepted widely. Then, traditional deby etheory has been 

improved [1]. The Maxwell-Wagner model for oil-paper 

composite insulation system can't exp lain precisely 

experimental data [2]. A broadband mathematical model for 

oil-paper composite insulation system was established which 

is called Havriliak-Negami model with two  relaxat ion branchs 

[3]. But circu it model for oil-paper composite insulation 

system has been not brought up. By making use of the related 

theory of fractional calculus , this paper based on the theory of 

dielectric proposed a more concise fractional order circuit  

model.  

II.   THEORY OF FRACTIONAL CALCULUS 

In mathematics, the fractional calculus has not been unified 

defined in time domain so far. Riemann-Liouville formula 

used in this paper is defined as  
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Fractional component is also known as constant phase 

element(CPE)[4]. Fract ional order capacitance element can be 

represented as 
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Admittance is indicated respectively as follows 
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III. FRACTIONAL ORDER CIRCUIT MODEL FOR OIL-PAPER 

COMPOSITE INSULATION 

According to the following formula  in [5]  
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Considering the formula  (6) in [1] 
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Formula (7) can be drawn  by fourier inverse transformat ion 
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It can be simplified to formula (8) 
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 and it is a constant. 

Applying (8) to (5), equation (5) can be derived as  
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As Riemann-Liouville definit ion if  1n  ， 0a  ，it can be 

writed as follow  
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Taking count of formula (10), equation (9) can be finally 

expressed as  
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where
0 (1 )C KC    . 

The corresponding circuit model is as  figure 1. 

gG gC C

 
Fig.1. Fractional orderequivalent circuit model. 

Assuming that the transformer o il and insulation board  are 

homogeneous medium respectively,oil-paper board can be 

seen as two series of homogeneous medium.So improved 

Maxwell-Wagner model is put forward as figure 2. 
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Fig.2. Improved Maxwell-Wagner model. 

IV. VALIDATION OF IMPROVED MAXWELL-WAGNER MODEL 

To verify the correctness of improved Maxwell-Wagner 

model, the measurement data of d ielectric response of oil-

paper which was taken from [3] was fitted by using genetic 

algorithm. The fitting results are shown in figure 3. 

 
Fig. 3. Fitting result of improved Maxwell-Wagner model. 

V.THE COMPARISONS OF  MODEL 

The superiority of  improved Maxwell-Wagner model can 

be seen exp licitely by comparisons with tradit ional Maxwell-

Wagner model [2] and extended Debye model [6]. Useing  

genetic algorithm the same measurement data has been fitted 

as figure 4. The green line and blue one and balck one present 

respectively traditional Maxwell-Wagner model and improved 

Maxwell-Wagner model and extended Debye model. The fit  

residuals of this three models are shown as table 1. It can  be 

seen from table 1 that the fit residual of improved Maxwell-

Wagner model is  the minimum among this three models. So  

the conclusion can be drawn  that improved Maxwell-Wagner 

model is more  accurate than other models.  
TABLE I 

THE FIT RESIDUALS OF THREE MODELS 

Types of model Fit Residuals 

Maxwell-Wagner 3.436e-03 
Improved Maxwell-
Wagner 

2.732e-05 

Extended Debye 3.016e-04 

 

 

Fig. 4. Comparisons of  traditional Maxwell-Wagner model and improved 

Maxwell-Wagner model and extended Debye model. 

VI. SIMPLE APPLICATION 

In order to verify practicability of improved Maxwell-

Wagner model , the measurement data[2] of dielectric 

response of oil-paper composite insulation under polarity 

reversal voltage was compared with results of numerical 

simulation[6] of mode as figure 5.  

 
Fig.5. Improved Maxwell - Wagner model fitt ing polarity reversal voltage 
response. 
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